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Introduction to the MAXQ™

architecture
Microcontroller system designers today have a myriad of choices when it comes to selecting a
microcontroller for a project—8-bit, 16-bit, RISC, CISC, or something in between. As a rule,
many criteria are considered during the selection process. These can include price, performance,
power, code density, development time, and even future migration-path alternatives. To
complicate the selection process, tight demands for one criterion generally influence the options
in other areas. Factors critical in one application may have little importance in another.
Consequently, there is no one microcontroller that is perfect for all projects. But to be successful,
a modern microcontroller must excel in many of the areas under consideration.

When world-renowned analog chipmaker, Maxim Integrated Products, joined forces with the
industry-leading high-performance microcontroller supplier, Dallas Semiconductor, an
opportunity to integrate superior analog functionality with leading-edge microcontrollers was
created. One result of this partnership is the MAXQ RISC architecture, a new microcontroller
core that combines high performance and low power with a variety of complex analog functions.

When integrating complex analog circuitry with high-performance digital blocks, the operating
environment should be kept as quiet and noise-free as possible. However, the clocking and
switching that occur in the digital circuits of a microcontroller core inject noise into the sensitive
analog section. Therein lies the difficulty facing the mixed-signal designer: to achieve high
microcontroller performance, but minimize clock noise that can affect sensitive analog circuits.

The MAXQ architecture reduces noise through intelligent clock management and utilization.
This means that the MAXQ core enables clocks only to those circuits that require clocking at any
instant, thus reducing power consumption and providing a quiet environment optimal for analog
integration. Additionally, the MAXQ architecture performs many functions on each clock to
maximize its performance. This article provides an overview of the MAXQ architecture and
highlights its competitive advantages.

No wasted clock cycles

The MAXQ architecture was designed to achieve a high performance-to-power ratio. The first
requisite in generating a high-efficiency machine is to maximize utilization of the clock cycles
for user code execution. 

The most fundamental way that the MAXQ achieves high utilization is through single-cycle
instruction execution. Single-cycle instruction execution benefits the end user by increasing
instruction bandwidth that leads to higher performance, and/or reduced power consumption
made possible by the ability to reduce clock frequency. All MAXQ instructions execute in a
single clock cycle except long jump/long call and certain extended register accesses. While many
RISC microcontrollers claim to support single-cycle execution, this often applies to a small
subset of instructions or addressing modes. With the MAXQ, single-cycle execution is the norm.

Secondly, the MAXQ architecture achieves increased clock-cycle utilization because it does not
require an instruction pipeline (common to many RISC microcontrollers) to achieve single-cycle

The MAXQ RISC
architecture combines
high performance and
low power with a
variety of complex
analog functions.
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operation. The MAXQ instruction decode and execution hardware is so simple (and timing so
fast) that these operations are moved into the same clock cycle as the program fetch itself, with
minimal impact to the maximum operating frequency. To illustrate the benefit of eliminating the
instruction pipeline, consider the generic RISC CPU that executes from a pipeline. When a
program branch occurs, the CPU uses one or more clock cycles (depending upon pipeline depth)
to divert program fetching to the target branch address and discards the instruction(s) already
fetched. Clearly, using clock cycles to discard instructions, versus executing them, is wasteful
and undesirable as it reduces performance and increases power consumption. While the
operation is undesirable to the user, the clocks stolen by the CPU to reload the pipeline are an
artifact of the architecture and are unavoidable. The MAXQ architecture distinguishes itself from
other 8-bit and 16-bit RISC microcontrollers by offering single-cycle execution without an
instruction pipeline (and the wasted clock cycles that accompany it). 

The MAXQ instruction word

The MAXQ instruction word is unique because there is only one instruction in the classical sense,
the “MOVE” instruction. The source and destination operands for the “MOVE” instruction are the
basis for creating instructions and memory accesses, and triggering hardware operations.
Dissecting the 16-bit MAXQ instruction word reveals only two components: a 7-bit destination
field and an 8-bit source field accompanied by a source format bit. The source format bit, when
coded as 0, allows any immediate or literal byte value (i.e., #00h–#FFh) to be supplied as a source

operand. Unrestricted support for any immediate byte source
within a single instruction word can be very valuable during
register initialization routines and when performing ALU
operations. The nonliteral source and destination possibilities are
subdivided into smaller groups, or modules. Figure 1 illustrates
the 16-bit MAXQ instruction word. 

All machine instructions reduce to source and destination
operands for a transfer operation. These operands can be used
to select physical MAXQ device registers. This type of transfer
is the most basic and quite easy to imagine. In the MAXQ
machine, however, the source and destination operands are not
rigidly associated with physical registers.

The MAXQ architecture uses this same source-to-destination transfer construction when
performing indirect memory access. Certain destination and/or source encodings are identified
as indirect access portals to physical memories such as the stack, accumulator array, and data
memory. These indirect memory access portals use physical pointer registers to define the
respective memory address locations for access. As an example, one way that the data memory
can be accessed indirectly is using the “@DP[0]” operand. This operand, when used as a source
or destination respectively, triggers an indirect read or write access to the data memory location
addressed by the Data Pointer 0 (DP[0]) register. 

The MAXQ architecture also uses special destination and/or source encodings to trigger
underlying hardware operations. This trigger mechanism serves as the basis for creating MAXQ
instructions that are implicitly linked to certain resources. For example, math operations (ADD,
SUB, ADDC, and SUBB) are implemented as special destination encodings that implicitly target
one of the working accumulators, with only the source operand supplied by the user. Conditional
jumps implicitly target the instruction pointer (IP) for modification and are implemented as
separate destination encodings for each status condition that can be evaluated. 

The indirect memory access and underlying hardware-operation triggers are combined whenever
possible to create new source/destination operands, which provide dual benefits. The auto-
increment/decrement indirect-access mnemonics for the data pointers demonstrate this
combination. When reading from data memory with DP[0], the user can optionally increment or
decrement the pointer following the read operation using the “@DP[0]++” or “@DP[0]--”source
operand, respectively.

IMMEDIATE BYTE DATA
(i.e., 00h–FFh)

INDEX MODULEINDEX MODULE

0

1

f ddd dddd

FORMAT DESTINATION SOURCE

ssss ssss

INDEX MODULE

Figure 1. The MAXQ
instruction word is simple,
yet very powerful.

...the MAXQ core
enables clocks only 
to those circuits that
require clocking at any
instant, thus reducing
power consumption 
and providing a quiet
environment optimal 
for analog integration. 
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Numerous advantages come as a result of the MAXQ instruction word. The instruction word
contains modularly grouped source and destination operands, which allow simple and fast
instruction-decoding hardware and limit signal switching for those modules not involved in the
transfer, thus reducing dynamic power consumption and noise. The instruction word uses its full
16 bits to specify source and destination operands, producing an abundant address space for
physical registers, indirect memory access, and hardware-triggered operations. Ultimately,
coupling the abundant source/destination address space with minimal restrictions on source-
destination combinations gives rise to a highly orthogonal machine. 

MAXQ system highlights

The MAXQ system not only provides the basic hardware resources and capabilities expected by
today’s microcontroller users, but it also enhances these resources and adds new features to
expand device functionality and utility. While it is not feasible to document all the MAXQ
system resources, some are discussed here.

Working accumulators

The MAXQ architecture thus far has been addressed as a single entity. However, two slightly
different versions, the MAXQ10 and MAXQ20, will be implemented in the initial MAXQ
product family launches in early 2004. The primary difference between the MAXQ10 and
MAXQ20 options is the standard width of the working accumulators and supporting arithmetic-
logic unit (ALU). The MAXQ10 supports 8-bit (byte-wide) accumulators and ALU operations,
while the MAXQ20 supports 16-bit (word-wide) accumulators and ALU operations. The MAXQ
devices come equipped with a minimum quantity of eight accumulators and, depending on the
application, can have as many as 16 accumulators. In the source/destination transfer map, these
accumulators are located in a system register module and are each directly accessible as A[n],
where n corresponds to their respective index. So, a MAXQ device equipped with 16
accumulators would contain accumulators A[0], A[1]…A[14], and A[15]. Any one of the
accumulators can be designated as the active accumulator and indirectly accessed through the
Acc mnemonic by setting the accumulator pointer register, AP, to its specific index (i.e., Acc =
A[AP]). The AP register implements only the number of bits necessary to provide a binary
decode into the accumulator array, so four bits are required in MAXQ devices having 16
accumulators. All ALU operations implicitly specify the active accumulator as the destination for
the operation being performed. Take, for example, the “ADDC src” instruction. This instruction
always performs the addition operation between the active accumulator, the carry flag, and the
source (src) operand specified. A wealth of bit manipulation and shift/rotate instructions surround
the active accumulator.

Additional hardware is attached to the accumulator pointer to expedite ordered and predictable
accesses to the accumulator file. The accumulator-pointer control (APC) register provides bits
for resetting AP and for streamlining increment, decrement, and modulo operations on the
accumulator-pointer register. 

The processor status flag (PSF) register contains five status flags, which have special meaning
in relation to the active accumulator status and ALU operations. These are the (C)arry, (Z)ero,
(S)ign, (E)qual, and (OV)erflow status flags. Some of these flags can be evaluated for
performing conditional jumps and returns. The PSF register also provides two additional general-
purpose flags (GF1 and GF0) for user software needs.

Dedicated hardware stack 

The MAXQ architecture contains a dedicated hardware stack. The stack depth for any MAXQ device
is product dependent. A dedicated hardware stack has two distinct advantages. Firstly, it allows data
memory to be preserved for other application uses instead of being consumed by stack, and secondly,
it supports fast PUSH/POP operations because a dedicated read/write port exists, which need not be
shared with data memory. If the hardware stack depth is insufficient for the context storage needed,
then the stack-like operation of the data pointers (pre-increment/decrement for writes, post-
increment/decrement for reads) is ideal for creating software stacks in data memory. 

The MAXQ exploits a
transfer-triggered
architecture to achieve
the objectives of high
bandwidth, high
efficiency, and high
orthogonality.

...coupling the abundant
source/destination
address space with
minimal restrictions on
source-destination
combinations gives rise
to a highly orthogonal
machine. 
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Flexible interrupt architecture

The MAXQ10 and MAXQ20 support a single, user-configurable, interrupt-vector address
register. This scheme allows placement of the interrupt identification and servicing routines
according to user preference. There is no natural priority forced upon any interrupt source. In
addition to the normal individual and global interrupt enables and flags, masking and
identification flags are provided at the module level. The individual source enabling, module-to-
global level masking, and prioritization of interrupt sources is under the control of user code. The
described interrupt support structure can be advantageous. First, no code space is left unused. This
generally cannot be said for microcontrollers having dedicated interrupt-vector addresses per
source, as code space associated with unused interrupt vectors is often left unused. Second, the
user has increased control over which interrupts are enabled and over interrupt prioritization. 

Hardware-loop counters reduce overhead

The MAXQ architecture implements a DJNZ instruction that can operate with either of two 16-bit
loop counter (LC[0] or LC[1]) registers. In a single-clock cycle, the “DJNZ LC[n], src” instruction
decrements the loop counter register and, if the counter has not reached 0, it conditionally branches
program execution to the specified address. For competing RISC microcontrollers, updating a
counter register and testing for a loop-terminating condition are generally two separate operations.
Merging the two actions in the MAXQ means that software loops, commonplace in microcontroller
application code, require less code and cycle overhead to manage the loop counter. The single-
cycle, DJNZ-triggered loop-counter decrement and conditional branch operation exactly follow our
objective of maximizing utilization of clock cycles. 

Enhanced data pointers 

The MAXQ comes equipped with three 16-bit data pointers (DP[0], DP[1], and BP[Offs]). All
three data pointers are individually configurable for either word- or byte-access mode via the
Word/Byte Select (WBSn) register bits in the Data-Pointer-Control (DPC) register. All three data-
memory pointers support single-cycle indirect memory access with pre-increment/decrement for
write operations and post-increment/decrement for read operations. One of the data pointers, the
Frame Pointer (FP=BP[Offs]), is generated by the unsigned additive combination of a 16-bit base-
pointer (BP) register and an 8-bit offset (Offs) register. This type of pointer is especially important
to C compiler development tools, and more specifically, in the handling of stack frames. 

Harvard memory architecture with Von Neumann benefits

The MAXQ architecture uses a Harvard memory organization, one in which the program and
data memory buses are separate, so that simultaneous access to an instruction word and a data
word can occur in the same clock cycle. This style of memory organization is necessary to
achieve maximum performance and support single-cycle execution of instructions that access
data memory. Microcontrollers that use a Von Neumann memory interface experience
performance bottlenecks associated with sharing bus bandwidth among accesses to program
memory, data memory, I/O, and peripherals.

Advocates of the Von Neumann memory architecture cite the inability to access program space
as data memory and vice versa as a weakness. Having accessibility can simplify constant storage,
look-up tables, and in-system or in-application programming alternatives. The MAXQ
architectural solution to this weakness is insertion of a memory-management unit (MMU) and
fixed-utility ROM that provide logical memory mappings and fixed utility-code routines to
support in-system programming and the desired access modes.

Centralized access to resources

Another important feature of the MAXQ architecture is the presence of a single transfer map that
contains access points to all resources. The reason for calling this a transfer map and not simply
a register map is the transfer-trigger concept upon which the MAXQ architecture is based.

The MAXQ architecture
distinguishes itself from
other 8-bit and 16-bit
RISC microcontrollers 
by offering single-
cycle execution 
without an instruction
pipeline (and the
wasted clock cycles 
that accompany it). 
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The transfer map is partitioned into 16 modules. Within each module are 32 indexes or individual
access points. It should be emphasized, once again, that these access points can be used for direct
read/write access to registers, but they may also be used for indirect access to memory or to
trigger hardware operations. Of the 16 modules, the first six modules (M0–M5) are allocated for
device-specific peripheral functions. This provides a generous amount of space (6 x 32 = 192
locations) in the transfer map for peripheral registers and access. These modules, based upon the
specific MAXQ device option, are populated with registers to implement functions such as
digital I/O, timers, serial ports, hardware multiplier, LCD driver, ADC, and in-circuit debugger.
The last 10 modules (M6–M15) are reserved for MAXQ system functionality. The system
modules contain registers that are vital to MAXQ system operation, such as those used for
watchdog, system clock, and interrupt control. The system modules additionally contain the
working accumulator file, data pointers, and source/destination encodings that trigger indirect
memory access and/or special machine operations. The basic system register space is
intentionally kept as common as possible among MAXQ device options. Figure 2 presents an
example MAXQ source and destination transfer map.

The prefix register module is a feature of the
MAXQ architecture that deserves special
mention. There exists a single prefix register in
which the data (default = 00h) is used for those
transfer operations requiring it. This prefix
register, when loaded, holds data for one clock
cycle before being returned to a 00h state. An
index (n) must accompany the prefix-register
(PFX[n]) selection. Since there are 16 modules
and 32 indexes per module in the transfer map,
certain locations cannot be directly accessed
using the source/destination encoding bits
available in a single-instruction word. This is
true of the latter 16 source indexes and the latter
24 destination indexes in a module. The prefix
register solves this problem by opening an
access window to these locations, which lasts
for one cycle. When the PFX[n] register is
loaded, its index “n” supplies the high-order
source and destination bits to the instruction
immediately following, where n = dds. In this
respect, the prefix-register module is a means through which additional decoding bits can be
supplied to access extended (and/or protected) registers. Operations and accesses that require
loading the prefix register are automatically generated by the assembler and need not be
manually coded by the user. The prefix-register module can also be used to concatenate source
bytes when writing to 16-bit destinations. Although transparent to the user, the prefix register is
used exactly in this fashion for jumps and calls to 16-bit absolute addresses. For those interested
in future enhancements to the MAXQ architecture, the prefix-register module provides a
seamless mechanism for MAXQ instruction-set expansion or extension into currently unused
system-module space.

To summarize, the complete transfer map on any MAXQ device contains all system and
peripheral registers defined for the device. The same map provides indirect access points to the
data memory, stack memory, and accumulator array. The same map contains access points that
trigger MAXQ machine instructions and underlying operations, and a mechanism for simple
extension of the instruction set in future MAXQ families. With access points to all resources
aggregated into a central transfer map, the number of source-to-destination transfer opportunities
is very large. The centralized access also simplifies clock distribution to only those resources
needing a clock. This promotes a very quiet environment (hence the “Q” in MAXQ) that is
advantageous when integrating analog peripherals. The MAXQ architecture allows maximum
modularity and portability of peripheral functions. This strategy, intentionally adopted to align

Figure 2. All MAXQ
resources are accessible
through a central transfer
map.
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The MAXQ contains a
single transfer map that
is partitioned into 16
modules providing
access points to all
resources.



6

with rapid product development cycles and ever-changing peripheral requirements of the end user,
promotes flexibility and reuse. The modularity of peripheral functions minimizes the design time
required to duplicate, add, or remove standard MAXQ peripheral modules when creating new
MAXQ devices for certain markets or applications.

Conclusion

The MAXQ architecture is truly an innovation in today’s microcontroller industry. The MAXQ
exploits a transfer-triggered architecture to achieve the objectives of high bandwidth, high
efficiency, and high orthogonality. Furthermore, the modular organization of the MAXQ system
and peripheral resources leads to compiler optimizations and allows portability of modules for
rapid creation of new MAXQ derivatives. Looking to the future, the MAXQ architecture
incorporates a built-in mechanism for instruction-set expansion suitable for next-generation
products. These compelling benefits make the MAXQ architecture an ideal solution for existing
and future projects, as it will inevitably rank high no matter the selection criteria for the project.

MAXQ is a trademark of Maxim Integrated Products, Inc.
SPI is a trademark of Motorola, Inc.

...the modular
organization of MAXQ
system and peripheral
resources leads to
compiler optimizations
and allows portability
of modules for rapid
creation of new MAXQ
derivatives.
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Benchmarking the MAXQ 
instruction-set architecture vs.
RISC competitors
This article compares the MAXQ instruction set with competing microcontrollers, including the
PIC16CXXX (mid-range devices), AVR, and MSP430. A table details the strengths and
weaknesses of each instruction set and architecture. We will use selected code algorithms and
operations for judging code density and code performance. A final section introduces and
highlights the MIPS (millions of instructions per second)/mA ratio for each code example.

Overview of MAXQ instruction set

The MAXQ instruction set is founded upon the transfer-trigger concept. The instruction word is
composed simply of source and destination operands. While these source and destination
operands may represent physical registers, the encodings may also represent indirect access
points to data memory, stack memory, and the working accumulators, and/or may implicitly
trigger hardware operations. Additional information on the MAXQ transfer-triggered
architecture can be found in the previous article of this journal. Source and destination encodings
for specific MAXQ devices are defined in the MAXQ User Guide(s) associated with the device.
While some source and destination encodings may be device specific, such as those designated
for peripheral hardware functions, certain fixed encodings are identified for building the MAXQ
base instruction set. Figure 1 gives the MAXQ instruction word and instruction set mnemonics.

 

MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION
BIT MANIPULATION LOGICAL
MOVE C, #0/#1 Clear/Set Carry AND Logical AND
CPL C Complement Carry OR Logical OR
AND Acc.<b> Logical AND Carry with Accumulator Bit XOR Logical XOR
OR Acc.<b> Logical OR Carry with Accumulator Bit CPL,NEG One's, Two's Complement
XOR Acc.<b> Logical XOR Carry with Accumulator Bit SLA,SLA2, SLA4 Shift Left Arithmetically 1,2,4
MOVE C, Acc.<b> Move Accumulator Bit to Carry SRA,SRA2,SRA4 Shift Right Arithmetically 1,2,4
MOVE Acc.<b>,C Move Carry to Accumulator Bit SR Logical Shift Right
MOVE C, src.<b> Move Register Bit to Carry RR,RRC Rotate Right Carry (Ex/In)clusive 
MOVE dst.<b>, #0/#1 Clear/Set Register Bit RL,RLC Rotate Left Carry (Ex/In)clusive
MATH DATA TRANSFER
ADD, ADDC Add Carry (Ex/In)clusive XCHN Exchange Accumulator data nibbles 
SUB, SUBB Subtract Carry (Ex/In)clusive XCH   (MAXQ20) Exchange Accumulator data bytes
FLOW CONTROL AND BRANCHING MOVE dst, src Move source to destination

JUMP {C/NC/Z/NZ/E/NE/S}
Jumps - unconditional or conditional, 
relative or absolute PUSH/POP Push/Pop stack

DJNZ LC[n], src Decrement Counter, Jump Not Zero POPI Pop stack and enable interrupts (INS≤0)
CALL Call  – relative or absolute Other
RET {C/NC/Z/NZ/S} Return – unconditional or conditional  NOP No Operation

RETI {C/NC/Z/NZ/S}
Return from Interrupt  – unconditional 
or conditional CMP Compare with Accumulator

 

DESTINATION SPECIFIER

FORMAT BIT    (0 = IMMEDIATE SOURCE, 1 = MODULE SOURCE)  

SOURCE SPECIFIER

Figure 1. The source-to-
destination transfer
illustrated in the MAXQ
instruction word produces a
small, yet very potent
instruction set.
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MAXQ vs. other instruction-set architectures

One could attempt to compare the MAXQ instruction mnemonics against those of other
architectures, but this analysis would be difficult and unjustified because each instruction set is
architected around specific device resources and addressing modes. For this reason, the instruction
set and the device architecture (instruction cycle, memory model, register set, addressing modes,
etc.) are inseparable and must be considered together. Table 1 summarizes the strengths and
weaknesses of the instruction-set architectures being compared.

Code examples

The best way to compare instruction-set architectures is to define some set of tasks and write the
code to perform those tasks. The sections that follow describe certain tasks to be performed and
summarize the code density and performance results for each instruction-set architecture. Example
code for the first routine is included in the document, while the routines that follow will only be
summarized with graphs and text. The code routines corresponding to each set of statistics are
available from Dallas Semiconductor upon request.

ISA STRENGTH WEAKNESS

AVR

• 32 general-purpose working
registers (accumulators)

• Data pointers are part of the
directly addressable working
registers; allow easy masking and
bit-manipulation of high/low
pointer bytes.

• Read from pointer + displacement
(0 to 63-byte displacement)

• Stack limited only by internal
RAM (except 90S1200 with no
RAM, then stack depth = 3)

• Single-cycle operation
• Relative jumps ±2k (two-cycle)
• All AVR have data EEPROM
• Explicit instructions to set/clear

each status register flag; large
group of bit-manipulating
instructions

• Separate interrupt vectors

• Pipelined instruction fetch
• Beyond the 32 regs, load (LD)/store

(ST) overhead becomes a factor
LD/ST @X,Y,Z = two cycles,

• LPM = 3 cycles
• Reduced support/scope on literal

operations (no ADDC, EORI; only
CPI, ORI, ANDI, SUBI, SBCI, LDI
work on R16–R31)

• No rotate instructions exclusive of
carry

• Conditional jump range only
+63/-64 (two-cycle)

• CALL/RET/RETI = four cycles

PIC16CXXX

• Source, destination bit encoded
into ALU operations

• Direct data access (symbolic
addressing mode) can produce
dense code and is conducive to
data overlays

• four-clock core yields poor
execution speed

• Pipelined instruction fetch
• Access to upper data-memory banks

requires paging (RP1:0 bank select)
• Indirect data access requires

INDF,FSR registers
• Cannot directly load W

(accumulator)
• No ADDC, SUBB
• Stack depth = 8
• No relative jumps/branches—only

absolute (CALL, GOTO) or
conditional skips (BTFSx)

• RETLW for code memory reads =
wasted code space and does not
allow CRC of code space

• CALL/GOTO/RET/RETFIE/RETW
all require eight clock cycles
(two instruction cycles)

• Single interrupt vector

Table 1. Instruction Set Comparisons...the instruction set
and the device
architecture
(instruction cycle,
memory model,
register set,
addressing modes,
etc.) are inseparable
and must be
considered together.
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Memory copy (MemCpy64)

The memory copy example demonstrates the microcontroller’s ability to indirectly manipulate
blocks of data memory. The task is to copy 64 bytes from a data-memory source location to a
nonoverlapping data-memory destination. The code routines for each microcontroller are
provided on the following pages, along with graphs that summarize the cycle count and byte
count for the copy operation. These routines assume that the pointer and byte count have already
been defined before the copy operation, and that the bytes to be copied are word-aligned in
memory so the word access modes of the MSP430 and MAXQ20 can be used. 

ISA STRENGTH WEAKNESS

MSP430

• Extensive source, destination
addressing modes are encoded
within the op code—can yield dense
code

• 16-bit internal data path
• Internal memory accessible as word

or byte
• Constant generator (CG) for -1, 0, 1,

2, 4, 8
• Single-cycle operation
• Stack limited only by internal RAM
• Conditional/relative jump destination

range = ±512 (two-cycle)
• Separate interrupt vectors, single-

source flags automatically cleared

• Von Neumann memory map +
elaborate addressing modes = many
cycles. The ONLY single-cycle
instructions are those dealing
exclusively with Rn. Peripheral
register access = three to six cycles

• Literals not supported by CG
require extra word

• Destination operand cannot be
register indirect or register indirect
auto-increment

• No auto-decrement support for
register indirect

• Symbolic addressing limits the
ability to reuse code routines

MAXQ

• System and peripheral registers are
accessible as source or destination
in the same logical memory space,
yielding the fastest data transfers

• Single-cycle operation and no
pipelining

• Single-cycle conditional jump
(+127/-128) or two-cycle absolute
jump (0–65,535)

• Single-cycle CALL/RET/RETI
• Auto-decrementing loop-counter

registers eliminate overhead
normally wasted when maintaining
a counter

• Three data pointers with auto-
increment/decrement support. One
data pointer, FP, supports base
pointer + offset addressing (i.e.,
BP[Offs]).

• Auto-increment/decrement/modulo
controls for accumulator (working
register) file

• Selectable word or byte-access
mode for each data pointer

• Prefixable op code allows a simple
means for instruction set extensions
or enhancements

• Active accumulator is always the
implicit destination for ALU
operations

• Single-port, synchronous, SRAM
data memory requires that a data
pointer be activated (selected)
before being used

• Default stack depth = 16, however,
data pointer hardware is ideal for
implementing a soft stack in data
memory

Table 1. Instruction Set Comparisons (continued)

System and
peripheral registers
are accessible as
source or destination
in the same logical
memory space,
yielding the fastest
data transfers.
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;======================================AVR======================================
; ramsize=r16 ;size of block to be copied
; Z-pointer=r30:r31 ;src pointer
; Y-pointer=r28:r29 ;dst pointer
; USES:
; ramtemp=r1 ;temporary storage register
loop: ; cycles

ld ramtemp,Z+ ; 2 @src => temp
st Y+,ramtemp ; 2 temp => @dst
dec ramsize ; 1 
brne loop ; 2/1
ret ;  4/5

;---------

;(7*bytecount) + return –1(last brne isn’t taken).

; WORD COUNT = 5 ; CYCLE COUNT = 451

;=====================================MAXQ10====================================
; DP[0] ; src pointer (default WBS0=0)
; DP[1] ; (dst-1) pointer (default WBS1=0)
; LC[0] ; byte count (Loop Counter)
loop: ;words & cycles

move DP[0], DP[0]     ; 1  implicit DP[0] pointer selection
move   @++DP[1],@DP[0]++  ; 1  
djnz LC[0], loop ; 1 
ret ; 1 

;----------
; 4 / (3*bytecount) +1  

; WORD COUNT = 4 ; CYCLE COUNT = 193

;====================================MAXQ20=====================================
; Assuming bytes are word aligned (like MSP430 code) for comparison
; DP[0] ; src pointer (default WBS0=1)
; DP[1] ; (dst-1) pointer (default WBS1=1)
; LC[0] ; byte count  (Loop Counter)
loop: ;words/cycles

move DP[0], DP[0] ; 1  implicit DP[0] pointer selection
move   @++DP[1],@DP[0]++ ; 1  
djnz LC[0], loop ; 1 
ret ; 1 

;----------
; 4 / (3*bytecount/2) +1

; WORD COUNT = 4 ; CYCLE COUNT = 97

;====================================MSP430=====================================
; MSP430 has a 16-bit data bus
; assuming bytes are word aligned, only requires (blocksize/2 transfers).
; R4 ;src pointer
; R5 ;dst pointer
; R6 ;size of block to copy
loop: ;words/cycles

mov @R4+, 0(R5) ;2 / 5  @src++ => dst
add #2, R5 ;1 / 1  const generator makes this 1/1
decd.b R6 ;1 / 1  really sub #2, R6
jz loop ;1 / 2
ret ;1 / 3  

;----------
;6 / (9*(bytecount/2)) + return 

; WORD COUNT = 6 ; CYCLE COUNT = 291

;===================================PIC16CXXX===================================
; a     ; src pointer base
; b ; dst pointer base
; i ; byte count held in reg file
; USES:
; temp  ; temp data storage
loop: ; cycles

decf    i, W ; 1 i-- => W 
addlw   a ; 1 (a+i--) => W starting at end 
movwf   FSR     ; 1 W => FSR 
movfw   INDF ; 1 W <= @FSR get data 
movwf   temp ; 1 W => temp 
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movlw   (b-a) ; 1 diff in dest-src 
addwf   FSR, F  ; 1 (b+i--) => W 
movfw   temp ; 1 temp => W 
movwf   INDF ; 1 W => @FSR store data 
decfsz  i, F ; 2/1 i-- 
goto    loop ; 2
return ;   2

;----------
;11 / (12*bytecount) +1 (ret instead of

goto, +1 on decfsz)
; WORD COUNT = 12 ; CYCLE COUNT = 769 (*4clks/inst cycle = 3076)

The MAXQ devices provide the best code density and are the clear winners in execution speed.
The MAXQ10 performs the copy operation slower than the MAXQ20 because it uses the default
byte-access mode for the data pointers. For a MAXQ10 application, if execution speed is deemed
more important than code density and the data memory to be copied is word-aligned (an
assumption already being made for the MSP430 and MAXQ20 example), it could use word-
access mode for the source and destination data pointers. Enabling word mode would allow the
MAXQ10 copy loop to be cut in half, but would require additional instructions to enable/disable
word-access mode. The overwhelming performance advantage demonstrated by the MAXQ
devices over the competition can be attributed to the following architectural strengths: 

1) No pipelining—branches do not incur the overhead of flushing the instruction prefetch as
other devices do.

2) Auto-decrement loop counter—alleviates the need to do this manually.

3) Harvard memory map—program and data do not share the same physical space, allowing
simultaneous program fetch and data access.

4) Post-increment/decrement indirect destination pointer—simplifies and speeds advancement
of the destination pointer. This is a weakness of the MSP430, which uses 0(R5) to denote
@R5, and then must advance that destination pointer in the following instruction.

The MAXQ advantages illustrated in the memory copy example translate into similar gains for
applications requiring frequent input/output buffering in data memory. In terms of performance,
the nearest competitor is the MSP430. As an example where data memory buffering may be
desired, suppose we have an MSP430 device equipped with an ADC peripheral with a 16-bit
output register. Transferring data from the peripheral output register into data memory and
incrementing the pointer in preparation for the next ADC output sample might be handled with
code such as this:

; words/cycles

mov.w   &ADAT,0(R14) ; 3 / 6 Store output word

incd.w  R14        ; 1 / 1 Increment pointer

; 4 / 7

The same transfer operation would look like this on the MAXQ20:

move @DP[0]++, ADCOUT ; 1 / 1
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gains for applications
requiring frequent
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in data memory.
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Bubble sort (BubbleSort) 

The bubble sort routine not only demonstrates the ability to access data memory efficiently, but
also performs arithmetic and/or comparison operations between data bytes and conditionally
reorders the bytes. The code routine sorts 32 data-memory bytes so they are left in an ascending
or descending order. The cycle counts assume that byte reordering occurs approximately half of
the time as a result of adjacent byte comparisons. The graphs below summarize the cycle count
and byte count for the sort operation on each microcontroller.

The MAXQ devices, once again, yield the best code density and are the clear winners in
execution speed. The MAXQ advantages can be attributed to the same architectural strengths
discussed in the memory copy example.

Hex-to-ASCII conversion (Hex2Asc)

This conversion routine tests the scope of the microcontrollers’ arithmetic and logical operations.
It also tests their support of literal byte data when translating and expanding data contained
within a single byte. The cycle count represents an average value, given that each nibble can be
one of 16 hex values—0 to 9, A to F. The graphs below summarize the cycle count and byte count
for the conversion operation on each microcontroller.

For this test routine, the AVR requires one fewer word since its working registers are directly
accessible, whereas the most efficient method for the MAXQ requires a manual update of the
accumulator pointer. The MSP code density suffers because it lacks operations for manipulating
nibbles, and because literals (#nnnnh) not supported by the constant generator must be encoded
in a separate word. The MAXQ devices and the Atmel AVR achieve similar results in the
performance area, while other devices lag behind. The MSP430 performance suffers from the
extra code words to perform the operation. 

Arithmetic shift right 2 positions (ShRight)

This routine demonstrates the microcontrollers’ ability to support 16-bit word data-memory
access and ALU operations. The desired operation is to arithmetically shift (i.e., preserving the
most significant bit) a 16-bit word that resides in data memory. It is assumed that the word
resides in the first 256 bytes of data memory and is aligned in memory to be word addressable
by those microcontrollers with the capability. The following graphs summarize the cycle count
and byte count for the shift operation on each microcontroller.

Both microcontrollers that support 16-bit ALU operations, the MAXQ20 and MSP430, provide
significantly better code density. With exception of the PIC, all of the 8-bit machines require at
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least twice the number of code words to accomplish the same arithmetic shift. The MAXQ20
offers the best performance, and the MAXQ10, while supporting only 8-bit ALU operations,
approaches the performance of the 16-bit MSP430.

The MAXQ20 and MSP430 demonstrate higher code density because of their ability to handle
16-bit data more efficiently than the 8-bit machines. Each does so, however, in a slightly different
fashion. The MAXQ20 transfers the 16-bit word to be shifted into a working register
(accumulator) where it can use a multibit arithmetic shift. The MSP430 performs single-bit
arithmetic shift operations using the register indirect-addressing mode (RRA @R5), and does not
explicitly transfer the word from its memory location. While offering higher performance, the
MAXQ20 can provide the same or better code density as the MSP430, when the arithmetic
shifting of a 16-bit word can use one of the multibit arithmetic shift op codes (SRA2, SRA4,
SLA2, SLA4). 

Bit-bang port pins (BitBang)

This example tests the ability of an instruction-set architecture to decompose bytes, either by
direct bit manipulation or through shift/rotate, and send the individual bits to a port pin (“bit-
banging”). The port-pin outputs separately represent clock and data, with the requirement that
data must be valid on the rising edge of clock. Since the code is directly manipulating the port
pins, this test also demonstrates the ease with which I/O port registers can be accessed. The
graphs below summarize the cycle count and byte count for the port bit-bang operation on each
microcontroller.

The MAXQ devices again are clearly the best performers. The PIC performance is limited here
(as in other examples) because of the underlying 4-cycle core architecture. The MSP430
performance is worse and can be attributed to both its Von Neumann memory architecture and
required use of absolute addressing to access the port output register. 

With respect to code density, the MAXQ and PIC have the same word count. Yet the PIC edges
out the MAXQ among the RISC machines because of its 14-bit program word versus the 16-bit
program word of the MAXQ. The MSP430 code density suffers because it must use at least two
words to access its peripheral registers with the absolute-addressing mode (i.e., &register) or
when using literals that cannot be reduced by the constant generator (e.g., #3h).

The MSP430 method of accessing its peripheral registers deserves further comment. The
microcontroller’s primary duty is to interface in some way with the outside world. Thus it must
control, monitor, and process activity that occurs at I/O pins. If the microcontroller embeds very
few peripheral-hardware modules, the burden of this activity is left to the software. For the
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software to do anything meaningful, it must read and write the port pins. On the MSP430, these
port-pin registers reside in the peripheral register space that requires use of the absolute-access
mode. Now consider a microcontroller that is rich with “smart” peripherals. There will
undoubtedly be more peripheral registers that must be configured, controlled, and accessed
during the course of using the on-chip, dedicated hardware to perform the necessary function. On
the MSP430, these registers reside in the peripheral register space that requires use of the
absolute-access mode. Consequently, there is no escape around the code density and
performance penalty associated with the MSP430 absolute addressing mode. 

The “MIPS/mA” metric

Power consumption is often a significant factor in the selection of a processor or core architecture.
The overall power consumption of a given system depends upon many factors such as supply
voltage and operating frequency, and its ability to use low-power modes whenever possible.
Reduced supply voltage(s) and/or operating frequency, along with frequent use of low-power
modes, can greatly reduce the total system power consumption. While the minimum supply
voltage for a given microcontroller depends greatly upon the device fabrication process
technology, the ability to reduce operating frequency and use low-power mode(s) is largely
dependent upon application requirements that can be determined by the system designer. The
MIPS/mA metric provides a simple means for assessing the code efficiency of a microcontroller
while factoring in active current consumption. A common supply voltage should be chosen to
create meaningful MIPS/mA comparisons between different devices. For the forthcoming
comparison, a 3V-supply voltage is assumed. To factor in differences and efficiencies in the
instruction-set architectures being compared (i.e., AVR, MSP430, PIC16, MAXQ), it is also
necessary to generate separate MIPS/mA ratios for each code example generated.

To determine the “mA” portion of the MIPS/mA ratio, we examine
data sheets of the devices. Most microcontroller vendors specify
typical and maximum active current associated with the maximum
operating frequency of the device. Assuming very small static (DC)
current, these data points allow one to derive typical and maximum
mA/MHz approximations used for extrapolating active current at any
clock frequency. The mA/MHz ratio can be better quantified and
defined relative to specific system environmental conditions if the
vendor provides active current vs. temperature/frequency
characterization data. Otherwise, we must simply rely on the discrete
data points and our assumption of very small static current. Increased

static (DC) current changes the starting point for the mA vs. MHz characteristic curve, thereby
limiting the overall gain seen by the system designer when reducing clock frequency (reducing
dynamic current). Figure 2 gives an example IccActive vs. MHz graph. Table 2 compares
mA/MHz numbers for the various cores and cites the source for the information. The highlighted
mA/MHz number for each architecture is used when this term is required in later calculations.

The “MIPS” portion of the MIPS/mA metric is used to quantify the difference in performance.
We will start by giving a simple equation for MIPS in
Figure 3.

The number of clocks per instruction (CPI) is highly
important when assessing MIPS for a given architecture.
Architectures such as the Microchip PIC, for example,
require multiple clocks per instruction cycle. Additionally,
architectures often require multiple instruction cycles to

execute certain instructions or need cycles to flush the instruction pipeline when performing
jumps/branches. When comparing architectures, the average performance in MIPS is often much
less than the peak performance (MIPS) and varies depending upon instruction mix. 

The MIPS/mA metric
provides a simple
means for assessing 
the code efficiency of 
a microcontroller while
factoring in active
current consumption.
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Figure 2. This example 
for IccActive vs. MHz 
illustrates the effects of
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Figure 3. The MAXQ
architecture achieves a
high-MIPS performance
ratio by executing nearly
all instructions at one 
clock per instruction.
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To produce a more useful indicator and generate a value that helps us reach our MIPS/mA target
metric, we divide MIPS by MHz. The MIPS/MHz ratio can be interpreted as the average number
of instructions that execute in a single clock (for the given code example). Using the MIPS/MHz
number and the mA/MHz number calculated earlier, the MIPS/mA ratio can be generated. The
tables below show the MIPS/MHz and MIPS/mA numbers, respectively, for each of the earlier
code-routine comparisons. 

To take the analysis one step further, we must factor in differences between core architecture and
instruction-set efficiency by dividing the MIPS/mA ratio by the number of instructions that are
actually executed for the given code sample. The rationale for this extra calculation is that the
execution of three single-cycle instructions (with the highest MIPS/MHz ratio = 1) is really no
better than one 3-cycle instruction (MIPS/MHz ratio = 0.33). Nonetheless, the resultant
MIPS/mA ratio differs drastically. In fact, most would prefer a single instruction to three if the
same task were accomplished. By dividing the MIPS/mA ratio by the number of instructions

DEVICE
TYPICAL
mA/MHz

MAX
mA/MHz SOURCE

PIC16C55X 0.7 1.25
PIC16C55X data sheet: DC Table 10.1, D010 (VCC = 3V, 2MHz);
XT or RC

PIC16C62X 0.7 1.25
PIC16C62X data sheet: DC Table 12.1, D010 (VCC = 3V, 2MHz);
XT or RC

PIC16LC71 0.35 0.625
PIC16C71X data sheet: DC Table 15.2, D010 (VCC = 3V, 4MHz);
XT or RC

PIC16F62X 0.15 0.175 PIC16F62X data sheet: DC Table 17.1, D010 (VCC = 3V, 4MHz)

PIC16LF870/1 0.15 0.5
PIC16F870/1 data sheet: DC Table 14.1, D010 (VCC = 3V, 4MHz);
XT or RC

AT90S1200 0.33 0.75
AT90S1200 data sheet: EC Table (3V, 4MHz), Figure 38,
4mA/12MHz (typ)

AT90S2313 0.50 0.75
AT90S2313 data sheet: EC Table (3V, 4MHz), Figure 57,
7.5mA/15MHz (typ)

MSP430F1101 0.30 0.35
MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V,
FMCLK = 1MHz)

MSP430C11X1 0.24 0.30
MSP430x11x1 data sheet: DC specs IccActive (VCC = 3V,
FMCLK = 1MHz)

MSP430Fx12x 0.30 0.35
MSP430x12x data sheet: DC specs (VCC = 3V, FMCLK = 1MHz,
FACLK = 32kHz)

MAXQ10 0.30 Simulations
MAXQ20 0.30 Simulations

Table 2. Comparison of mA/MHz Numbers for Various Cores

MIPS/MHz
CORE

MemCpy64 BubbleSort Hex2Asc ShRight BitBang Peak
MAXQ10 1.00 0.99 1.00 1.00 1.00 1
MAXQ20 1.00 0.99 1.00 1.00 1.00 1

PIC 0.23 0.20 0.23 0.25 0.21 0.25
MSP 0.44 0.39 0.64 0.33 0.38 1
AVR 0.57 0.62 0.90 0.71 0.61 1

MIPS/mA
CORE

MemCpy64 BubbleSort Hex2Asc ShRight BitBang
MAXQ10 3.33 3.30 3.33 3.33 3.33
MAXQ20 3.33 3.30 3.33 3.33 3.33

PIC 1.53 1.35 1.53 1.67 1.40
MSP 1.85 1.62 2.66 1.39 1.55
AVR 1.71 1.86 2.69 2.14 1.83

Table 3. Comparison of MIPS/MHz and MIPS/mA for Selected Code Algorithms

The MIPS/MHz ratio
can be interpreted as
the average number
of instructions that
execute in a single
clock (for the given
code example). 
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executed, we are adjusting the MIPS/mA ratio to the instruction mix used by a given
microcontroller to perform a specific task. The resultant values have been normalized to the
highest performer and are presented in the table below. 

Conclusion

The normalized “MIPS/mA” metric gives us a relative performance-to-current ratio for
comparing microcontrollers with different architectures, instruction sets, and current-
consumption characteristics. A higher normalized “MIPS/mA” ratio generally can yield one or
both of the following benefits: (1) system clock frequency can be reduced, and (2) the duration
of time spent in a low-power or sleep mode can be increased. Both of these possibilities serve to
reduce the system’s overall power consumption. Alternately, higher overall system performance
can be realized while remaining within a given current/power budget. No matter the benefit, the
high MIPS/mA ratio produced by the MAXQ architecture is a trustworthy indication of
efficiency.

NORMALIZED (MIPS/mA)CORE
MemCpy64 BubbleSort Hex2Asc ShRight BitBang

MAXQ10 0.50 1.00 1.00 0.40 1.00
MAXQ20 1.00 1.00 0.96 1.00 1.00

PIC 0.06 0.29 0.39 0.33 0.38
MSP 0.42 0.45 0.68 0.56 0.48
AVR 0.19 0.48 0.88 0.26 0.48

Table 4. Comparison of Normalized MIPS/mA Values
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Programming in C for the
DS80C400
Since the introduction of the TINI® Runtime Environment for the DS80C390, developers have
clamored for a way to use the power of TINI without using the Java™ language. Unfortunately, the
network stack and other features of TINI were too intertwined with the Java virtual machine and
runtime environment to be used from a C or assembly program. Later, when the ROM for the
DS80C400 networked microcontroller was designed, a suite of functionality was exposed that could
be accessed from programs written in 8051 assembly, C, or Java. Size constraints limited the
functionality in the ROM to a subset of the functionality in the TINI Runtime Environment. The
ROM would therefore be a useful starting block for building C and assembly programs because it
offers a proven network stack, process scheduler, and memory manager. Simple programs like a
networked speaker could easily be implemented in assembly language, while C could be used for
more complex programs like an HTTP server that interacts with a file system.

This article starts with a C implementation of Hello World and moves on to a simple HTTP server.
It describes how to set up the tools to write a simple tutorial program, and then demonstrates how
to make use of the DS80C400’s ROM functionality. All development was done using the
TINIm400 verification module and Keil µVision2™ version 2.37, which includes the C compiler
“C51” version 7.05.

Getting started with Keil’s µVision2

You can build a simple Hello World-style program written in C using the Keil µVision2
development suite. Follow these instructions to complete your first C application for the
DS80C400.

• Select Project->Create New
Project. Enter the name of the
project.

• The Select Device for Target dialog
will pop up. Under Data base, select
Dallas Semiconductor and the
DS80C400. Select Use Extended
Linker, and then select Use Extended
Assembler. Hit OK to continue.
Figure 1 shows the proper
configuration for this dialog.

• The dialog will ask, Copy Dallas
80C390 Startup Code to Project
Folder and Add File to Project?
Select No. We will supply our own
startup code.

• When the project window opens on
the left, open Target 1. Right click on
Source Group 1, and select Add files
to group 'Source Group 1.' In the file
dialog that pops up, change files of
type to Asm Source file. Add the file
startup400.a51. This file can be
found in the zip file at www.maxim-
ic.com/HelloWorld.

Figure 1. Select the
DS80C400 for a new Keil
µVision2 project.
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• It is essential that the application is built for address 400000h, which corresponds to the
beginning of the flash on the TINIm400. Open the file startup400.a51 by double clicking on
it. Find the segment declaration for ?C_CPURESET?0. Make sure that this code segment is
declared at 400000h:

?C_CPURESET?0    
SEGMENT CODE AT 400000h

• Additionally, there should be a “DB'TINI'” line followed by another single DB, with the
comment “Target bank.” This declaration is part of a tag that tells the DS80C400 ROM to
execute the code starting at address 400000h. This ensures that the application is built for
address 400000h, which should correspond to the beginning of the flash on the TINIm400.
Make sure that line reads:

DB   40h       ; Target bank

•   Create a new file. Save it as “main.c.” Write the following in that file:
#include <stdio.h>

void main()
{

printf("Test 400 Program\r\n");
while (1) { }

}

• Save the contents of this file. Right click on Source Group 1 and add the source file main.c.
The source file should now be added to the project.

• Right click on Target 1 on the left. Select Options for target 'Target 1' to view an option
dialog. The first tab selected should be Target. Change Memory Model to Large: variables
in XDATA. Change Code Rom Size to Contiguous Mode: 16MB program. Select the
check boxes for Use multiple DPTR registers and far memory type support. Under Off-chip
Code memory, add the first entry with a Start of 0x400000 and Size of 0x80000. For Off-chip
XData memory, add an entry with a Start of 0x10000 and a Size of 0x4000. Figure 2 shows
this dialog after it has been configured. Note that the last ‘0’ in 0x400000 is not displayed in
the window.

These settings are based on the memory configuration of the TINIm400 reference module,
which includes 512k of RAM at address 0 and 1M of flash at address 400000h. The starting
addresses and sizes in the Keil configuration should be changed for custom DS80C400 designs.

• Select the Output tab. Click on Create HEX File and select HEX-386 in the drop-down box.

• Press F7 to build the application. If every task was done correctly, the application should
build with no errors or warnings. A hex file should have been generated. You can now load
the application onto your board.

Loading the sample application onto the TINIm400 module

This section describes how to load the hex file produced by the Keil compiler onto the TINIm400
verification module by using the tool JavaKit.

To use JavaKit, you must have the Java Runtime Environment (at least version 1.2) and the Java
Communications API installed. The Java Runtime Environment can be downloaded at
http://java.sun.com/j2se/downloads.html, and the Java Communications API can be found at
http://java.sun.com/products/javacomm/index.html. The JavaKit tool is included with the TINI
Software Development Kit, available at www.maxim-ic.com/TINIdevkit. Instructions for running
JavaKit can be found in the file Running_JavaKit.txt in the docs directory of the TINI Software
Development Kit. If you encounter technical issues when running JavaKit, it is possible someone
already had a similar problem, which is chronicled in the archives of the TINI Interest List. You
can search the archives for this list at www.maxim-ic.com/TINI/lists.

The DS80C400’s ROM is 
a useful starting block
for building C and
assembly programs
because it offers a
proven network stack,
process scheduler, and
memory manager.
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Use this command line to have the JavaKit
talk to the TINIm400 module.

java JavaKit -400 -flash 40

Once JavaKit is running, select the serial
port you will use to communicate with the
TINIm400. Open the serial port using the
Open Port button. Then press the Reset
button. The loader prompt for the DS80C400
should print and look like this:

DS80C400 Silicon Software -
Copyright (C) 2002 Maxim
Integrated Products

Detailed product information
available at http://www.maxim-
ic.com

Welcome to the TINI DS80C400
Auto Boot Loader 1.0.1

>  

From the File menu at the top of JavaKit, select Load HEX File as TBIN. Find the
helloworld.hex file that we just created, and select it. The Load HEX File as TBIN option
converts the input hex file to a TBIN file, and then loads it. This operation is faster than
loading it as a hex file because an ASCII hex file is more than twice as large as a binary file
for the same data set.

There are two ways to execute your program
once it is loaded. Since the program was
loaded into bank 40, you can type:

> B40
> X

To select bank 40 and execute the code there,
you can also type:

> E

This will make the ROM search for
executable code, a special tag signifying
that the current bank has executable code.
This tag consists of the text “TINI” followed
by the current bank number. It is located at
address 0002 of the current bank. Our Hello
World program declares this tag in the
startup400.a51 file with the following lines:

?C_STARTUP:   SJMP STARTUP1
DB    'TINI' ; Tag for TINI Environment 1.02c

; or later (ignored in 1.02b)
DB    40h ; Target bank

Figure 2. The Target
Options dialog is used to
enter configuration
information for the target
platform. The configuration
shown is suitable for use
with the TINIm400 module.

Figure 3. The JavaKit
program is used to load
applications and
communicate with the
serial port of the
DS80C400.



20

Note that the SJMP STARTUP1 statement is located at address 0000 of bank 40. It is followed
by the executable tag { 'T', 'I', 'N', 'I', 40h }, located at address 0002, since the sjmp statement is
two bytes. 

When you type “E,” the ROM searches downward through the memory banks for executable
code. If you type “E” and some other code executes, it means that the ROM has found an
executable tag at an address higher than 400000h, where your code was loaded. You may need to
find that tag and delete the contents of that bank. You can erase a flash bank by using the Z loader
command:

> Z41
You sure? Y

To erase all banks of flash, you need to zap from bank 40h to bank 4Fh.

Interfacing to the ROM and the ROM libraries

Calling the ROM functions from C is complicated. (The procedure for calling ROM functions is
described in the High-Speed Microcontroller User’s Guide: DS80C400 Supplement.1) Parameters
must be converted from the Keil C Compiler’s conventions to the conventions used by the ROM.
The Keil compiler passes parameters in a combination of XDATA locations and registers. The
ROM functions accept parameters in different ways. For example, the socket functions accept
parameters stored in a single parameter buffer, and many utility functions accept parameters
passed in special function registers or direct memory locations. Dallas Semiconductor wrote
libraries for accessing the ROM functions to translate from Keil calling conventions to the ROM’s
parameter conventions.

Using ROM functions in your C programs requires only importing the library and including a
header file. To import a library in your project, right click on Source Group 1 in your Keil project
window and select Add Files to Group 'Source Group 1.' Change the file filter to '*.lib' and select
the library you need to include. Then include the header file at the top of your source. You can use
any of the library functions. There are ROM libraries to support ROM initialization, DHCP client
operations, process management, socket functions, TFTP client operations, and utility functions
such as CRC and pseudo-random number generation.

Using the extension libraries

In addition to the ROM libraries, other libraries (more are still being written) provide useful
functionality not included in the ROM. Libraries have been developed for file system operations,
DNS lookups, I2C™ communication, and 1-Wire® communication.

The C Library project (including documentation, sample applications, and release notes) for the
DS80C400 can be found at www.maxim-ic.com/ds80C400/libraries.

A simple HTTP server and SNTP client application

Dallas Semiconductor wrote a small application to demonstrate the functionality of these libraries,
specifically the file system, sockets, process scheduler, and TFTP libraries. The sample application
consists of an SNTP client and an HTTP server that responds only to ‘GET’ requests. It uses the
core Dallas Semiconductor-provided libraries to call socket and scheduler functions. It also uses
the file system to store a few web pages. The application consists of two processes: (1) the HTTP
server is spawned as a new process that handles connections on port 80, and (2) the main process
sits in a loop, attempting a time synchronization approximately every 60 seconds. The source code
and project files for this application are available at www.maxim-ic.com/timeserver.
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1 Available online at www.maxim-ic.com/DS80C400UG.
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Initializing the file system

Before the HTTP server can be started, the file system must be initialized. The demonstration
program ensures that two static files, a home page (index.html) and the source to the program
(source.html), are in the file system before the server starts.

The program initializes its file system by downloading the files it needs from a TFTP server. In
our example, a TFTP server is running at a known IP address. The files index.html and source.html
are requested from the TFTP server, then written to the file system.

SolarWinds provides a free TFTP server for Windows® platforms that was used in the
development of this demonstration. From SolarWinds’ website (www.solarwinds.net), follow the
Downloads—Free Software menu to find the TFTP server download. After installing, use the
Configure option under the File menu to configure the available files. Make sure to change the
program to use your TFTP server’s IP address (TFTP_IP_MSB, TFTP_IP_2, TFTP_IP_3,
and TFTP_IP_LSB).

The simple HTTP server

The HTTP server in this application is implemented as a simple version of an HTTP server
described by RFC 2068. In this version, only the ‘GET’ method is supported. Input headers are
ignored, and few output headers are given.

The server socket is created by calling Berkley-style socket functions, which make the server
socket easy to set up. The following code shows how our simple HTTP server creates, binds, and
accepts new connections.

struct sockaddr local;
unsigned int socket_handle, new_socket_handle, temp;

socket_handle = socket(0, SOCKET_TYPE_STREAM, 0);
local.sin_port = 80;
bind(socket_handle, &local, sizeof(local));
listen(socket_handle, 5);

printf("Ready to accept HTTP connections...\r\n");

// here is the main loop of the HTTP server
while (1)
{

new_socket_handle = accept(socket_handle, 
&address, sizeof(address));

handleRequest(new_socket_handle);
closesocket(new_socket_handle);

}

Note that when a new socket is accepted, this simple application does not start a new thread or
process to handle the request. Rather it handles the request in the same process. Any HTTP server
of more-than-demonstration quality would handle the incoming request in a new thread, allowing
multiple connections to occur and be handled simultaneously. After the request is handled, close
the socket and wait for another incoming connection.

The handleRequest method consists of parsing the incoming request for a file name and
verifying that the method is ‘GET.’ No other method (not even ‘POST,’ ‘HEAD,’ or ‘OPTIONS’)
is allowed. Two file names are handled as a special case. When the file time.html is requested, the
server dynamically generates a response consisting of the latest results from the timeserver, and the
number of seconds that passed since the last instance the timeserver was queried. When the file
stats.html is requested, statistics for server uptime and the number of requests are displayed.

If the file is not found or an invalid request method is given, an HTTP error code is reported.

Compared to the TINI
Runtime Environment,
applications written in 
C allow more space for
user code and data. 
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The SNTP client

The second major portion of the timeserver application is a Simple Network Time Protocol
(SNTP) client, as described in RFC 1361. This is a version of the Network Time Protocol (RFC
1305). SNTP requires UDP communication to request a time stamp from a server listening on port
123. Our timeserver uses the following code to periodically synchronize with the server
time.nist.gov. Note that when this article was written, DNS lookup was not supported, so the IP
address for the server is set manually. DNS has since been added to the C library website, and the
following code can be updated to perform a lookup for the IP address.

socket_handle = socket(0, SOCKET_TYPE_DATAGRAM, 0);

// set a timeout of about 2 seconds.  
//‘timeout’ is unsigned long
timeout = 2000;          
setsockopt(socket_handle, 0, SO_TIMEOUT, &timeout, 4);

// assume ‘buffer’ has already been cleared out
buffer[0] = 0x23;  // No warning/NTP Ver 4/Client

address.sin_addr[12] = TIME_NIST_GOV_IP_MSB;
address.sin_addr[13] = TIME_NIST_GOV_IP_2;
address.sin_addr[14] = TIME_NIST_GOV_IP_3;
address.sin_addr[15] = TIME_NIST_GOV_IP_LSB;
address.sin_port = NTP_PORT;
sendto(socket_handle, buffer, 48, 0, &address,

sizeof(struct sockaddr));
recvfrom(socket_handle, buffer, 256, 0, &address,

sizeof(struct sockaddr));
timeStamp = *(unsigned long*)(&buffer[40]);
timeStamp = timeStamp - NTP_UNIX_TIME_OFFSET;
// now we have time since Jan 1 1970
formatTimeString(timeStamp, "London",

last_time_reading_1);
last_reading_seconds = getTimeSeconds();
closesocket(socket_handle);

A datagram socket is first created and given a timeout of about 2 seconds (0x800 = 2048ms).
This ensures that if the communication fails with our chosen server, we will not wait indefinitely
for a response.

The next line sets the options for the request. These bits are described in Section 3 of RFC 1361.
The value 0x23 requests no warning in case of a leap second, requests that NTP version 4 be used,
and states that the mode is ‘Client.’ After we send the request and receive the reply using the
common datagram functions sendto and recvfrom, the seconds portion of the time stamp
value is assigned to the variable timeStamp, and then adjusted to the reference epoch January
1, 1970. The function formatTimeString is used to convert the time stamp into a readable
string, such as “In London it is 15:37:37 on March 31, 2003.”

The function getTimeSeconds is used to determine the last time update, based on the
DS80C400’s internal clock. Since the program only updates about once every 60 seconds, the
HTML page time.html uses this value to report the interval since the last time update. Finally, the
socket is closed and the SNTP client goes to sleep for another 60 seconds.
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Conclusion

The Keil C Compiler and libraries provided by Dallas Semiconductor allow applications written
in C to access the power and functionality formerly only accessible through TINI’s Java
environment. Programs written in C can now access the network stack, memory manager, process
scheduler, file system, and many other features of the DS80C400 networked microcontroller.
Additionally, applications written in C allow more space for user code and data, compared to the
TINI Runtime Environment. Developers using the C language for the DS80C400 can write lean
applications with plenty of speed, power, and code space to tackle any problem.

TINI and 1-Wire are registered trademarks of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.
µVision2 is a trademark of Keil Software, Inc.
I2C is a trademark of Philips Corp. Purchase of I2C components of Maxim Integrated Products, Inc., or one of its
sublicensed Associated Companies, conveys a license under the Philips I2C Patent Rights to use these components in an
I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
Windows is a registered trademark of Microsoft Corp.
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